CONTINUOUS DATA

Learning outcomes:

You will have knowledge about and be able:

  • Conduct fixed and random effects meta-analysis
  • Measure effect size
  • Explore heterogeneity using sub-group and meta-regression analyses
  • Explore and address small study effects using funnel plot and trim and fill

STEPS in conducting Continuous Data

  1. STEP 1 - LOAD DATA
  2. STEP 2 - DECLARE, UPDATE & DESCRIBE meta data
  3. STEP 3 - SUMMARIZE meta data by using a TABLE or a FOREST PLOT
  4. STEP 4- EXPLORE HETEROGENEITY - SUB-GROUP and META-REGRESSION analysis
  5. STEP 5- EXPLORE and ADDRESS SMALL-STUDY EFFECTS

Materials and setup

Laptop users: you will need a copy of Stata installed on your machine.

  • You can install a licensed version from https://warwick.ac.uk/services/its/servicessupport/software/list/stata
  • Find class materials at Click to Download
  • Download and extract to your desktop or any folder of your choice!

Link to YouTube Video Lecture

Click the image below:

STEP 1 - LOAD DATA

The meta command can also handle continuous outcomes (six variables).
n1 mean1 sd1 n2 mean2 sd2

Data for the continuous ‘outcome’:

  • year: Year
  • tsample: Number treated (exposed)
  • tmean: Mean in treated (exposed)
  • tsd: Standard deviation in treated (exposed)
  • csample: Number not treated (unexposed)
  • cmean: Mean in untreated (unexposed)
  • csd: Standard deviation in untreated (unexposed)

Option 1 Copy and paste from Excel (see attached cont_data.xlsx below)


edit

Option 2 Input raw directly into Stata (using ‘do file editor’ type doedit)

Option 3 Load Stata data file directly from Excel file


import excel  using data/cont_data.xlsx, firstrow clear
describe
(8 vars, 20 obs)


Contains data
  obs:            20
 vars:             8
--------------------------------------------------------------------------------
              storage   display    value
variable name   type    format     label      variable label
--------------------------------------------------------------------------------
id              str14   %14s                  id
year            int     %10.0g                year
tsample         int     %10.0g                tsample
tmean           double  %10.0g                tmean
tsd             double  %10.0g                tsd
csample         int     %10.0g                csample
cmean           double  %10.0g                cmean
csd             double  %10.0g                csd
--------------------------------------------------------------------------------
Sorted by:
     Note: Dataset has changed since last saved.

Option 4 Load Stata data file directly (if already saved)


use data/cont_data.dta, clear

describe
(Example dataset for meta-analyses, Ross Harris 2006)


Contains data from data/cont_data.dta
  obs:            20                          Example dataset for
                                                meta-analyses, Ross Harris 2006
 vars:             8                          11 Oct 2015 21:15
--------------------------------------------------------------------------------
              storage   display    value
variable name   type    format     label      variable label
--------------------------------------------------------------------------------
id              str14   %14s                  Study identifier
year            int     %8.0g                 Year
tsample         int     %9.0g                 Number treated (exposed)
tmean           float   %9.0g                 Mean in treated (exposed)
tsd             float   %9.0g                 Standard deviation in treated
                                                (exposed)
csample         int     %9.0g                 Number not treated (unexposed)
cmean           float   %9.0g                 Mean in untreated (unexposed)
csd             float   %9.0g                 Standard deviation in untreated
                                                (unexposed)
--------------------------------------------------------------------------------
Sorted by: year

STEP 2- DECLARE, UPDATE & DESCRIBE meta data

Continuous Type Description
hedgesg Hedges’s g standardized mean difference; the default
cohend Cohen’s d standardized mean difference
glassdelta2 Glass’s ∆ mean difference standardized by group 2 (control) standard deviation; more common than glassdelta1
glassdelta1 Glass’s ∆ mean difference standardized by group 1 (treatment) standard deviation
mdiff (unstandardized) mean difference
meta esize tsample tmean tsd csample cmean csd, studylabel(id) esize(hedgesg)
>

Meta-analysis setting information

 Study information
    No. of studies:  20
       Study label:  id
        Study size:  _meta_studysize
      Summary data:  tsample tmean tsd csample cmean csd

       Effect size
              Type:  hedgesg
             Label:  Hedges's g
          Variable:  _meta_es
   Bias correction:  Approximate

         Precision
         Std. Err.:  _meta_se
    Std. Err. adj.:  None
                CI:  [_meta_cil, _meta_ciu]
          CI level:  95%

  Model and method
             Model:  Random-effects
            Method:  REML

STEP 3- SUMMARIZE meta data by using a TABLE or a FOREST PLOT

meta forestplot, nullrefline
graph display
  Effect-size label:  Hedges's g
        Effect size:  _meta_es
          Std. Err.:  _meta_se
        Study label:  id

meta update, esize(mdiff)
-> meta esize tsample tmean tsd csample cmean csd , esize(mdiff) studylabel(id)

Meta-analysis setting information from meta esize

 Study information
    No. of studies:  20
       Study label:  id
        Study size:  _meta_studysize
      Summary data:  tsample tmean tsd csample cmean csd

       Effect size
              Type:  mdiff
             Label:  Mean Diff.
          Variable:  _meta_es

         Precision
         Std. Err.:  _meta_se
    Std. Err. adj.:  None
                CI:  [_meta_cil, _meta_ciu]
          CI level:  95%

  Model and method
             Model:  Random-effects
            Method:  REML
meta forestplot, nullrefline
graph display
  Effect-size label:  Mean Diff.
        Effect size:  _meta_es
          Std. Err.:  _meta_se
        Study label:  id

STEP 4- EXPLORE HETEROGENEITY - SUB-GROUP and META-REGRESSION analysis

meta regress year
  Effect-size label:  Mean Diff.
        Effect size:  _meta_es
          Std. Err.:  _meta_se

Random-effects meta-regression                      Number of obs  =        20
Method: REML                                        Residual heterogeneity:
                                                                tau2 =   .2539
                                                              I2 (%) =   58.12
                                                                  H2 =    2.39
                                                       R-squared (%) =    0.00
                                                    Wald chi2(1)   =      0.00
                                                    Prob > chi2    =    0.9729
------------------------------------------------------------------------------
    _meta_es |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
        year |  -.0008941   .0262719    -0.03   0.973    -.0523862    .0505979
       _cons |   1.871691   52.49334     0.04   0.972    -101.0134    104.7568
------------------------------------------------------------------------------
Test of residual homogeneity: Q_res = chi2(18) = 50.78   Prob > Q_res = 0.0001

STEP 5- EXPLORE and ADDRESS SMALL-STUDY EFFECTS

meta funnelplot, metric(invse)
graph di
  Effect-size label:  Mean Diff.
        Effect size:  _meta_es
          Std. Err.:  _meta_se
              Model:  Common-effect
             Method:  Inverse-variance

meta bias, egger
  Effect-size label:  Mean Diff.
        Effect size:  _meta_es
          Std. Err.:  _meta_se

Regression-based Egger test for small-study effects
Random-effects model
Method: REML

H0: beta1 = 0; no small-study effects
            beta1 =      0.36
      SE of beta1 =     0.894
                z =      0.40
       Prob > |z| =    0.6898
meta trimfill
  Effect-size label:  Mean Diff.
        Effect size:  _meta_es
          Std. Err.:  _meta_se

Nonparametric trim-and-fill analysis of publication bias
Linear estimator, imputing on the left

Iteration                            Number of studies =     20
  Model: Random-effects                       observed =     20
 Method: REML                                  imputed =      0

Pooling
  Model: Random-effects
 Method: REML

---------------------------------------------------------------
             Studies |       Mean Diff.    [95% Conf. Interval]
---------------------+-----------------------------------------
            Observed |            0.084      -0.214       0.382
  Observed + Imputed |            0.084      -0.214       0.382
---------------------------------------------------------------

CONTINUOUS DATA

STEPS in conducting Continuous Data

  1. STEP 1 - LOAD DATA
  2. STEP 2 - DECLARE, UPDATE & DESCRIBE meta data
  3. STEP 3 - SUMMARIZE meta data by using a TABLE or a FOREST PLOT
  4. STEP 4- EXPLORE HETEROGENEITY - SUB-GROUP and META-REGRESSION analysis
  5. STEP 5- EXPLORE and ADDRESS SMALL-STUDY EFFECTS

Sections

  1. Overview meta-analysis data types
  2. Introduction to Stata
  3. Meta-analysis of binary data
  4. Meta-analysis of generic data
  5. Meta-analysis of continuous data
  6. Meta-analysis of prevalence data